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Abstract;
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By W. Mangler

A method 1s described by means of which the laminar friction
layer at a well with arbltrary pressure distribution may be
calculated from Prandtl's boundary-—layer equations.

I. INTRODUCTION
II. TRANSFORMATTON OF THE BOUNDARY-LAYER EQUATIONS INTO THE
HEAT-CONDUCTION EQUATION
ITI. A SECOND TRANSFORMATION (NEIGHBORHOOD OF THE STAGNATION
POINT)
IV. TRANSFORMATION OF THE BOUNDARY~LAYER EQUATIONS INTO
THE HEAT-CONDUCTION EQUATION ACCORDING TO PRANDTL
"AND MISES
V. THE NEW CALCUILATION METHOD
VI. EXAMPIE
ViI. SUMMARY

VITII. REFERENCES

. Symbols
coordinates parallel snd vertical to the wal;
veloclty components parallel and vertical to the wall
prescribed velocity distributlon
stream function

reference veloclty (free—stream velocity)

reference length (profile chord or half the profile circum—
ference, respectively)

Reynolds number

*'Die allgemeine Losung der Prandtlschen Grenzschichtgleichungen."
Lilienthal-Gesellschaft fir Luftfahrtforschung Bericht 141, Oct., 1941,
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T. TNTRODUCTION

The solutions of Prandtl!s boundary—layer equations (reference 1)
¥nown so far (compare Howarth's report (reference 2) and K. Schrdder's
lecture on the GSttingen boundary-layer meeting) represent special
solutions inssmuch as they are valid only for speclal pressure
distributions and speclal 1initiael values. ZFor general appllcation, the
problem requires the solution of how a veloclty profile prescribed at a
point on a solid wall develops along the wall under the influence of a
glven pressure dlstribution.

A transformation of the boundary-—layer equatilons, go far probebly

unknown,l will be glven below with the aild of which the problem may be
traced back to one already known: the solution of the heat—conduction
equation. In order to enable, also, calculatlon of the stagnation polnt
profile, a second transformation 1s used which by & wholly analogous
process algo leads to the solution of a linsar differential eqguation.

The connection between the new transformation and the transformatlon Into
the heat—conduction equation previously indicated by Prandtl (refer—
ence 3) and Miges (reference 4) 1s shown.

By means of the resulting calculatlon msthod, the laminar stagpation
point profile and the boundary leyer on the circular cyllndsr may be
calculated.

II. TRANSFORMATION OF THE BOUNDARY-LAYER EQUATTIONS INTO
THE HEAT-CONDUCTION EQUATION
In calculating the laminar friction layer on a wing profile for high
Reynolds numbers, one may presuppose the radius of curvature of the wall

as large in proportion to the dimemslons of the. boundary layer so that
the wall curvature may be neglected. It enters into the valculation

only indirectly because the influence of the pressure distribution along'f

the wall, which 1s impressed on the boundary layer from the ocutside and
which 1s known from measurements or calculatlon, ls consildered.

lAfter conclusion of this report the author's attention was called
to a report by Plercy and Preston (reference 12) in which a similar
transformation of the boundary-—layer equations is performed for the case
of a constant pressure distributlon.

I
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If u and v denote the components of the velocity in the
friction layer in x— and y—dlrection, respectively, that is, parallel
or vertical to the wall y = O, vV, the kinemstlc viscosity of the air,
and TU(x), the velocity distribution outside of the friction layer to
be calculated by mesans of Bermoulli's equation, u and v must satisfy
the force equation '

u—a-u-+v§u—=U-d£+-v-§2—u- (1)
ox Sy dx By2
and the continuity equatlon
_ai + é‘: =0 (2)
ox oy

The latter is to be fulfilled by Introduction of the stream
function ¥(x,y)

u = -@I, v =N " (2a)
dy x
One may put
\b’(X,O) =0 (35-)

As boundery conditions one has at the wall the condition of no sllp

u(x,O) = 0, v(x,O) =0 (3b)
and for large dlstance from the wall the end condition

u(x,e) = T(x) (3c)
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In addition, there has to be a sultable initial condition; u(0,y) must
be known. If the friction layer begins at a gtagnation point [U(0) = 0O,
the most' important case for the wing, one has to put '

u{0,y) = O : (&)

It is shown that a lineasr differential eguation may be obtalned
from the guadratic equation (1), by first solving (1) asymptotically
for large ¥, thusa linsarizing wlth respect to smsll values of T — u.
If L denoctes a fixed reference length, U, & constant velocity, and

Re = E%E a Reynolds number, one may write (1) also in the form
™
M4G34§82UW—u)_LiUw—u)
0 SR x T®
LS U~ w) | |
Ty ¥y U2 B B
(5)
¥ )
-2 U=u 9 U-ugy YW U=-n
3y U, o X Uy U Ue
_U=-ufy 9 U—u_yut I S g;:—j)
Uy ox Uy U ay Ue

/

For large y the terms of the right side are small compared to those of
the left so that one obtalns, for large values of ¥y, a linear equation
UU - u
U2
conduction equation by passing to new coordinates ¢, n. These are
defined by

for the function . The latter may be transformed into the heat—

~
6 - * u(x) dx
B 0 UL &
(6)
"=yTUSt:_)‘/E J
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thus

If one finally puts

2
g=(%-%‘%(§)ﬁa’é (7)
and
Ux) _ g(e) (8)
2
U
there resgults
oL WU - (9)
on vl '

and one obtains from (5) the differential equation

SS-l S 14 - A WU W
- Eh- S-S 22
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or written differently

Be _ Pt _ at Pt _af Pt | g{: A (bi)z (10)
n3 3t a(g) 3t 2  dn Ot M2 2\
The boundary conditions now read i - ) =
g( E.,O) = O) Cn( §,O) = E( g): gn( §J°°) =0 ' (ll) '

and the initlel condition for the case of the stagnatlon point is ' -
£a(0sm) =0 (12)

The transformatlon determlnsnt has the value - =

tang — Egng = P(x) VRe

-U-we . L2 - -

thus becomes zerc at the stagnetlon point. If there U is proportional _
to x, £ becomes proportional x2 and n proportional %o xy so that
the stralght line & = 0 corresponds to the straeight llne x =0

although the correspondence 1s not a unique, point by point reversible _
one. Since thereby the boundary conditions and the Initial condition _
are not 1nfringed upon, this singularity does not cauge any disturbance.
For calculation of the stagnatlon point profile, however, one must turn

to other coordinates (compare section III).

For a general solutlon of equation (10), one first calculates a _ o
first approximation of 9 by putting the left side of (10) equel to _ —

zero and satisfying the boundary and initilal conditions (11), (12).

After introducing this first aspproximation lnto the right—side onse

determines a second approximation from (10) with known right side. _ ST
In this manner, the solution can, step by step, be improved by iteration. )
The essentlal fact is that the first approximation satisf'ies both boundary e
conditions, and completely solves equation (10) above all for large M

where the solutions contaln an essentlal singularity.
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The iteration method may also be written as a series development.
If fg denotes the difference of the K8 and (X — 1)th  approxi-
mation for ig, one has

. 2 n J
%ﬁ‘=i§m C=§:/ 2
=1 0

=1 on

(13)
with (g satisfying the equation (K=1,2, ... ; Ry =0)
@ 3
ST |
STl ty an 24 ! (1)
1% [3t o a 3L K
_ at
t —3 1
‘?D: &y dn m 2 ngK—j]
with the boundary conditions
\
' Cl( §,O) = é'-( §)
‘k(6,0) =o(k22) (15)
Cx(&,®) = O(K 2 1)
J
and. at the stagnation point the initial condition

tg(0,q) = 0(X 2 1)

(16)
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This 1s understood at once if equation (14) is summed over K and the
regulting douhle sum of the right side rearranged. Therewith the
solution of the boundary-leyer equatlon 1s traced back completely to a
known problem, the treatment of the inhomogeneous heat—conduction
equation,

The shearing stress distribution T in the friction layer-is
obtained from '

Ty S ¥
oU, 2 ) 3n° Kz—-l_an

2]

the dlsplacement thlckness

from

WpeHx) e v ST [ &
v a(t) \m—gl 0 Edﬂ

and the momentum thickness

from.
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IIT. A SECOND TRANSFORMATION (NEIGHBORHOOD OF THE STAGNATION POINT)

The singularity of the transformation (6) at the stagnation point
(O(x) = xU*(0) + . . .) can be avoided if a further transformation is
applied to equation (10).

If one pubts
~
_1 2%
5-20 3
1 =Cck
- ? (1)
t=cB T
c = |EO .
U, )

one obtalins altogether a transformation which 1s regular also for x = O.
Moreover the new variables '

ue |
o:H
<
51—;:]
5

R N o
- ¥
§=[§-aﬂJ§;£‘k () 8

‘/afu de'(o)er dx
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thué

14
=h <l ) %) U'(ol)i(/ft)r dx

(19)

are more suiteble for representation of the laminar profiles than the

former cnes because they are better adapted to the course of the boundary
layer, the thiclmess of which increases approximately like VX.

additlon, one puts

PT -PL 3¢ T 1 (3 PL_E 2T, % _
o “ET %o 1 E[afa# 3 3T 3 +Ea_',{2

The boundary conditions are

E-(E,0) = K(E)

|
o

Eﬁ( §—:°° ) =

If in

(20)

(22)
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As initilal condition -E(O,q) has to be prescribed so that the ordinary
differential equation originating from (21) for T = 0 is satisfied
with the boundary conditions (22).

Since, with the ald of (1T7), Green's function of the linear
differential equation for the rectangular region, which is found by
putting the left side of (21) equal to zero, also may be guessed, the
singular transformation (6) could as well be avolded and the entire
calculation performed with the ald of equation (21); however, for the
numerical calculation the use of equation (10) is more convenient.

IV. TRANSFORMATTON OF THE BOUNDARY-LAYER EQUATIONS INTO
THE HEAT-CONDUCTION EQUATION ACCORDING
TO PRANDTL, AND MISES
Prandtl (reference.3) and Mises (reference 4) have shown that one,
likewise, obtalng a form of boundary-layer equations related to the

heat—conduction equation, if one Introduces, instead of the distence
from the wall, the stream function V¥ as new lndependent varlable

7
§*=/"19_c=§
0 TeL
\ (=)

¥ £
¥ = =9 -
R e = n T
. S
and. puts
§*=D.2.ﬁ:2u_2=;0*[1—(1_§%&)2 (24)
One must then solve the equation
a8 _ h xR

(25)

d¢e* CO* a.q*2
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with the boundary conditions

C*(g*:o) =

E*(E*,00)

i

]
o

S
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(26)

and & sultably prescribed initial distribution t*(0,n*). Asymptotically
it is, for large n*, 8lsc transformed into the heat—conduction equation,
go that a similar iteration method could be used as for equation (20).

An indicetion to that end is to be found in Kérmén and Milliken (refer—
ence 5)}; however, the disadvantage of this method is that here a

singular point of the solutlon lies at the wall as well (the second

2% : _
dexrivative o7t there becomes infinitely large)

dn*2

» Wheresgs the solution

of (10) 1s regular et the wall and therefore more appf0piiafe”for an

lteration method.

V. THE NEW CALCULATION METHOD

In order to calculate a laminar friction léyer, one ‘hes, therefore,

to solve the system (1k) with the initilal end boundary conditions (15),

(16). The solutuions can be represented (compare, for instance, Frank—
Mises, reference 6, page 872) with the aid of Green's function

G(g;n;xJY)

for the rectangle

—_

-z

(27)

-

ik
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as definite integrals in the following manner

gl(g:'ﬂ) = 'élﬁ f-a(x)c’y(g:nixgo) dx (28)

end for K22

£ ]
CxlEom) =$ [ [G(E,n;x,y)(%K(x,y))w ax  (29)

Unfortunately, the lntegration 1in (28) can be carried out generally
only when &(&) is a polynome in &, The integration in (29) is even
then not generally performaeble so that numerical mesthods must be applied
for the evaluatlion of the integrals,

1f one puts
cl =-—.—11_--_l—
E\Ig—x
(30)
2VE-x

and denotes

<1>(c)=%.-i fe—a?dm

the Gaussion error function, G may be wrltten in the form

BQ( 0’1) _ B¢( 0'2)
oy oy

G’(gs'ﬂ;x:y) = ﬁ(
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Hence, one obtains from (28) and (29) the relations

g .
Geem) = [ 8(x) ale(o1))ye0 | :
x=0
(31)
3 © ' \ B
tel &9 = / (melx,y)) & [0 = 202l o0 (x5 2)
x=0 \ Uy=0 2/

Thus one has to plot & against

Py .
¢ 2\/€—x

and to integrate graphically, or, respectlvely, to plot - Rg, for fixed x,
first agaeinst Sl e <L - :

2 (2(c1) — 0(op))

and to integrate and to plot the integrals obtained once more a.ga,inst- x _ _
and to Integrate them., The derivatives required in the calculation of
the Ry valués are obtained from (K 2 2)
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St E o _0,12 _0,22
K _ (Rg(x,7)) 4} =2 dx
M Jx=0 | J¥=0 2Va VE - x
. 2 2
2 [F[[° o e
——EE = (Ry(x,7)) @ %1 2 dx
o =0 \U¥=0 2 Vx(t - x)
N F
&-IS = —X — Bg(t,m)

anz

Corresponding formulas are valld for the derlvatives of Ql:

Since this calculastlon has to be carried out for various palrs of
values £, n, the procedure is rather extensive even though the sbscissa
finctlons may be calculated once for all., Since for determination of
a veloclity profile at a polnt £ only the profiles lying shortly ashead
need be known more exactly — the profiles lying farther back having little
influence on the calculation at the point £ — information about a few
profiles at larger dlstances before and about several profiles shortly
ahead 1s sufficlent for calculating the profile at a point E.

No general statements may be made so far concerning the convergence
of the iteratlon method or an estimatlon of errors. The numerical calcu—
lation (compare section VI) proved that the QK velues rapidly decresass

in the proximity of the stagnation point whereass In the further course
of the Poundary layer, particularly in the neighborhood of the separation
point, the convergence seems to be less favorable,.

VI. EXAMPLE

In order to test the lteratlion method, at firet the velocity
distribution at the stagnatlon point was calculated with the aid of the
ordinary differential equation resulting from (21) for € =0, In
figure 1, the flrst approximations are compared with the solution
calculated by Hiemenz (reference 7) and Hartree (reference 8). Thus the
solution is approximated from one side by the iteration method.

%
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The laminar friction layer on a circular cylinder was calculated
as & further example, The potential thecretical velocity distribution

(fig. 2) -

-tl-=2.¢s:in-IE
L

U

not the experimental one according to Hlemenz (ref.erenc;e 7) was ta.keb.
as a basls because the function a(Et) may then be written as a
polynomial in E, ' '

a(é) =

| %o

= bxk — 722

n

U

The integral §; may then be calculated in closed form. The first

d . _ :
approximation for IEI =1 — -B_:]; is plotted in figure 3 for the points
k=0 (stagnation point), & =-1, xt = 2 (maximm velocity), ng = 2.6
(location of the laminar separation) and =& =3 agalnst —.

As a rough estimate ghows, the third approximation, in géneral s 8till
yields slightly too large values for %; the error ls growlng wilth

increasing n&. In the neighborhood of the wall, the various approxi—
metlons yleld partly too large, paxrtly too small values; hence, the
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polnt of laminar separstion could not be accurately determined for the
present. The calculation is to be continued in order to obtain more
accurately the profiles for larger £ values as well,

A few veloclty profiles at the veloclty maximum U' = O are plotted
for comparison in figure 5. Thus the profile at the flat plate calcu—
lated by Blasius (reference 9) almost agrees with the third approxi—
mation. Probably the differences decrease still more if further
approximations are calculated. One can see that the approximation
method according to Pohlhausen {reference 10) also yields relatively
satlglactory values. In contrast, the profile calculated according to
an approximation method of the author (reference 1l) deviates somewhat
more strongly, even though the result for the displacement thickness ¥
is practically correct.

A corresponding comparison for several profiles In the proximity
of the separation point (fig. 6) shows a relatively good agreement of
the third approximatlion with the approximation method of the author
(reference 11), whereas the corresponding Pohlhausen profile and, most
of all, the Hartree profile deviate more strongly.

On the basis of these examples and of the cases calculated
according to reference ll, where in contrast to the one—parameter method .
of Pohlhausen the prevlious history of a profile wes at least partly taken
into conslderation, the gtatement is permissible thet the previous history
in the reglion of the pressure drop behind a stagnation point has little
influence on the form of a boundary-layer profile, so that a one—parameter’
approximation yields usable values. In the region of pressure rise,
however, 1t wlll — in order to obtain more accurate calculetion —
probvably always be necessary to conslder the entlre previous pressure
distribution, not only the pressure gradlent at the respective point.

VII. SUMMARY

The solution of the boundary—layer equations for the laminar flow
along a wall with prescribed pressure dilstributions is traced back to
the sclution of a system of linear differential equatlons of the type
of the heat conductlon equation., Due to the necessarily large
expendliture in time, this does not yet represent a method easily
applicable in practice; however, one now has the possibility of completely
calculating a few characteristic cases in order to estimate and sometimes
improve the usefulness of the known approximation methods.

Tranalated by Mary L. Mshler
National Advisory Committee
for Aeronautics
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Figure 1.- The velocity profile at the stagnation point,
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Figure 2.~ The velocity distribution ﬁU— = 2 sin E-f— on the circular cylinder
and the function a(t) pertaining to if.
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Figure 3.- A few laminar velocity profiles on the circular cylinder
(first approximation).
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Figure 5.- Comparison of a few laminar velocity profiles at the pressure
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Figure 6.- Comparison of a few laminar velocity profiles in the region of
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